- Answer all the following questions
- The exam. Consists of one page
- No. of questions: 3
- Total marks: 60

Question 1

a) $f(x)=\left\{\begin{array}{cc}A x-B & x \leq-1 \\ 2 x^{2}+3 A x+B & -1 \leq x \leq 1 \\ 4 & x>1\end{array}\right\}$

Determine A and B so that the function $f(x)$ is continuous for all values of x
b) Given $\ell n(u)+y \cos u=\arccos \left(y^{2}\right)$ and $u e^{3 x}+3 x=u^{2}$, find $\frac{d y}{d x}$.

Question 2

a) Find the tangent and normal lines of the curve $\mathrm{x}^{\cot \mathrm{x}}$ at $\mathrm{x}=\frac{\pi}{2}$
b) Evaluate the following limits a) $\lim _{x \rightarrow 0}\left[\frac{1}{\sin x}-\frac{1}{x}\right]$,
b) $\lim _{x \rightarrow 0} \tan x \ell n x$

Question 3

a) Expand $f(x)=x^{3} \ell n(x+1)$ using Taylor about $x=1$
b) Evaluate $n^{\text {th }}$ derivative of the following functions
a) $f(x)=\cos (5 x) \sin ^{2}(2 x)$,
b) $g(x)=\ln \left[\sqrt[7]{\frac{12-x-x^{2}}{25-x^{2}}}\right]$

Good Luck

Model answer

Answer of Q1

a) Since $f(x)$ is continuous for all values of x, therefore $f(x)$ is continuous at $\mathrm{x}=-1$ and at $\mathrm{x}=1$.
$\lim _{x \rightarrow-1^{+}} 2 x^{2}+3 A x+B=\lim _{x \rightarrow-1^{-}} A x-B \Rightarrow 2-3 A+B=-A-B \Rightarrow A-B=1$
$\lim _{x \rightarrow 1^{-}} 2 x^{2}+3 A x+B=\lim _{x \rightarrow 1^{+}} 4 \Rightarrow 2+3 A+B=4 \Rightarrow 3 A+B=2$, hence $4 A=3 \Rightarrow$ $\mathrm{A}=\frac{3}{4}, \mathrm{~B}=-\frac{1}{4}$.
b) $\frac{1}{u}+y(-\sin u)+\cos u \frac{d y}{d u}=\frac{-2 y}{\sqrt{1-y^{4}}} \frac{d y}{d u} \Rightarrow\left[\cos u+\frac{2 y}{\sqrt{1-y^{4}}}\right] \frac{d y}{d u}=y \sin u-\frac{1}{u}$
$\Rightarrow \frac{d y}{d u}=\frac{\left[y \sin u-\frac{1}{u}\right]}{\left[\cos u+\frac{2 y}{\sqrt{1-y^{4}}}\right]}$.
And $u\left(3 e^{3 x}\right)+e^{3 x} \frac{d u}{d x}+3=2 u \frac{d u}{d x} \Rightarrow 3 u e^{3 x}+3=\left[2 u-e^{3 x}\right] \frac{d u}{d x} \Rightarrow$ $\frac{d u}{d x}=\frac{3 u e^{3 x}+3}{2 u-e^{3 x}}$

Answer of Q2

a) $y^{`}=x^{\cot x}\left[-\csc ^{2} x \ell \ln x+\frac{1}{x} \cot x\right]$, thus the slope of the tangent is $y^{`}\left(\frac{\pi}{2}\right)=-\ell \ln \frac{\pi}{2}$ Therefore the slope of the tangent is $\frac{1}{\ln \left(\frac{\pi}{2}\right)}$.

At $x=\frac{\pi}{2}, y=1$, therefore the equation of tangent is $\frac{y-1}{x-\frac{\pi}{2}}=-\ln \left(\frac{\pi}{2}\right)$ and the equation of normal is $\frac{y-1}{x-\frac{\pi}{2}}=\frac{1}{\ln \left(\frac{\pi}{2}\right)}$
b) This limit of the indeterminate form $(\infty-\infty)$ and we have to rewrite by taking the way of common denominator such that
$\lim _{x \rightarrow 0}\left[\frac{1}{\sin x}-\frac{1}{x}\right]=\lim _{x \rightarrow 0}\left[\frac{x-\sin x}{x \sin x}\right]=\lim _{x \rightarrow 0}\left[\frac{1-\cos x}{\sin x+x \cos x}\right]$
$=\lim _{x \rightarrow 0}\left[\frac{\sin x}{2 \cos x-x \sin x}\right]=0$
$-\lim \tan \mathrm{x} \ell \mathrm{nx}=0 \bullet(-\infty)$
$\mathrm{x} \rightarrow 0^{+}$
Rewrite the above limit such that $\lim _{x \rightarrow 0^{+}} \tan x \ell n x=\lim _{x \rightarrow 0^{+}} \frac{\ell n x}{\cot x}=\frac{-\infty}{\infty}$

Now L'Hospital's rule can be used so that $\lim _{x \rightarrow 0^{+}} \frac{\ell n x}{\cot x}=\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-\csc ^{2} x}$

Simplify and then apply L'Hospital's rule again, i.e $\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-\csc ^{2} x}$
$\lim _{x \rightarrow 0^{+}} \frac{\sin ^{2} x}{-x}=\frac{0}{0}=\lim _{x \rightarrow 0^{+}} \frac{2 \sin x \cos x}{-1}=0$

Answer of Question 3

a) Let $g(x)=\ell n(x+1) \Rightarrow g^{\prime}(x)=\frac{1}{x+1} \Rightarrow g^{\prime \prime}(x)=-\frac{1}{(x+1)^{2}} \Rightarrow$ $g^{\prime \cdots}(x)=\frac{2}{(x+1)^{3}}$

At $x=0 \Rightarrow g(0)=0, g^{`}(0)=1, g^{`}(0)=-1, g^{` `}(0)=2$
Using Taylor expansion
$\ell n(x+1)=g(0)+g^{`}(0) x+\frac{g^{`}(0)}{2!} x^{2}+\frac{g^{` `}(0)}{3!} x^{3}=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}$
Therefore $\mathrm{x}^{3} \ell \mathrm{n}(\mathrm{x}+1)=\mathrm{x}^{4}-\frac{1}{2} \mathrm{x}^{5}+\frac{1}{3} \mathrm{x}^{6}$
$f(x)=\cos (5 x) \sin ^{2}(2 x)=\cos (5 x) \frac{1}{2}[1+\cos (4 x)]=\frac{1}{2} \cos 5 x+\frac{1}{4}[\cos x+\cos 9 x]$
$\Rightarrow f^{(n)}=\frac{5^{\mathrm{n}}}{2} \cos \left(5 \mathrm{x}+\frac{\mathrm{n} \pi}{2}\right)+\frac{1}{4}\left[\cos \left(\mathrm{x}+\frac{\mathrm{n} \pi}{2}\right)+9^{\mathrm{n}} \cos \left(9 \mathrm{x}+\frac{\mathrm{n} \pi}{2}\right)\right]$
$\mathrm{g}(\mathrm{x})=\ln \left[\sqrt[7]{\frac{12-\mathrm{x}-\mathrm{x}^{2}}{25-\mathrm{x}^{2}}}\right]=\frac{1}{7}[\ell \mathrm{n}(3-\mathrm{x})+\ell \mathrm{n}(\mathrm{x}+4)-\ell \mathrm{n}(5-\mathrm{x})-\ell \mathrm{n}(5+\mathrm{x})]$,
therefore $\mathrm{g}^{(\mathrm{n})}=\frac{(-1)^{\mathrm{n}-1}(\mathrm{n}-1)!}{7}\left[\frac{(-1)^{\mathrm{n}}}{3-\mathrm{x}}+\frac{1}{x+4}-\frac{(-1)^{\mathrm{n}}}{5-\mathrm{x}}-\frac{1}{x+5}\right]$

